K-Theory for Exceptional Extended Affine Weyl Groups

Bath – LMS Symposium on K-theory & Representation Theory – July 20, 2022

Nick Wright (joint work with G.A. Niblo & R. Plymen)
The Baum-Connes assembly map

Question: What is $K_\ast(C_r^\ast G)$?

$C_r^\ast G = \text{reduced group C}^\ast\text{-algebra}$
The Baum-Connes assembly map

Question: What is $K_\ast(C_r^*G)$?

$C_r^*G = \text{reduced group } C^\ast\text{-algebra} – \text{completion of } L^1(G) \text{ represented on } L^2(G)$
The Baum-Connes assembly map

Question: What is $K_* (C^*_r G)$?

$C^*_r G = \text{reduced group } C^*\text{-algebra} – \text{completion of } L^1(G) \text{ represented on } L^2(G)$

Conjecture (Baum-Connes)

The assembly map $K_*^G (EG) \to K_* (C^*_r G)$ is an isomorphism.

EG is universal example of proper actions
Question: What is $K_*(C^*_rG)$?

C^*_rG = reduced group C^*-algebra – completion of $L^1(G)$ represented on $L^2(G)$

Conjecture (Baum-Connes)

The assembly map $K^G_*(EG) \rightarrow K_*(C^*_rG)$ is an isomorphism.

EG is universal example of proper actions

Geometry \rightarrow Analysis
Example

(3,3,3) triangle group $G = \langle s_1, s_2, s_3 | s_i^2 = 1, (s_i s_j)^3 = 1 \rangle \cong \mathbb{Z}^2 \rtimes S_3$
Example

(3,3,3) triangle group $G = \langle s_1, s_2, s_3 | s_i^2 = 1, (s_i s_j)^3 = 1 \rangle \cong \mathbb{Z}^2 \rtimes S_3$

Affine Weyl group of type A_2
Example

(3,3,3) triangle group \(G = \langle s_1, s_2, s_3 | s_i^2 = 1, (s_is_j)^3 = 1 \rangle \cong \mathbb{Z}^2 \rtimes S_3 \)

Affine Weyl group of type \(A_2 \)

LHS = \(K_*^{\mathbb{Z}^2 \rtimes S_3 \mathbb{R}^2} \)
Example

(3,3,3) triangle group $G = \langle s_1, s_2, s_3 | s_i^2 = 1, (s_i s_j)^3 = 1 \rangle \cong \mathbb{Z}^2 \rtimes S_3$

Affine Weyl group of type A_2

$LHS = K^\mathbb{Z}^2 \rtimes S_3 (\mathbb{R}^2) = K^S_3 (\mathbb{T}^2)$
Example

(3,3,3) triangle group \(G = \langle s_1, s_2, s_3 | s_i^2 = 1, (s_i s_j)^3 = 1 \rangle \cong \mathbb{Z}^2 \rtimes S_3 \)

Affine Weyl group of type \(A_2 \)

\[\text{LHS} = K_{\mathbb{Z}^2 \rtimes S_3}^* (\mathbb{R}^2) = K_{S_3}^* (\mathbb{T}^2) \]

\[C_r^* G = (C_{* \mathbb{Z}^2}^*) \rtimes S_3 \approx C(\mathbb{T}^2) \rtimes S_3 \]
Example

(3,3,3) triangle group $G = \langle s_1, s_2, s_3 | s_i^2 = 1, (s_is_j)^3 = 1 \rangle \cong \mathbb{Z}^2 \rtimes S_3$

Affine Weyl group of type A_2

$LHS = K_{*}^{\mathbb{Z}^2 \rtimes S_3} (\mathbb{R}^2) = K_{*}^{S_3} (\mathbb{T}^2)$

$C_{r}^{*}G = (C^{*}\mathbb{Z}^2) \rtimes S_3$

$\cong C(\mathbb{T}^2) \rtimes S_3$

$\sim C_0(\mathbb{R}^2) \rtimes (\mathbb{Z}^2 \rtimes S_3)$

$= C_0(\mathbb{T}^2) \rtimes (\mathbb{Z}^2 \rtimes S_3)$
Example

(3,3,3) triangle group $G = \langle s_1, s_2, s_3 | s_i^2 = 1, (s_i s_j)^3 = 1 \rangle \cong \mathbb{Z}^2 \rtimes S_3$

Affine Weyl group of type A_2

$LHS = K_{*}^{\mathbb{Z}^2 \rtimes S_3}(\mathbb{R}^2) = K_{*}^{S_3}(\mathbb{T}^2)$

$$C_{r}^{*} G = (C^{*} \mathbb{Z}^2) \rtimes S_3$$

\[\cong C(\mathbb{T}^2) \rtimes S_3 \]

\[\sim C_0(\mathbb{R}^2) \rtimes \mathbb{Z}^2 \rtimes S_3 \]

\[= C_0(\mathbb{R}^2) \rtimes (\mathbb{Z}^2 \rtimes S_3) \]
Example

(3,3,3) triangle group $G = \langle s_1, s_2, s_3 | s_i^2 = 1, (s_is_j)^3 = 1 \rangle \cong \mathbb{Z}^2 \rtimes S_3$

Affine Weyl group of type A_2

$LHS = K_{S_3}^{\mathbb{Z}^2 \rtimes S_3} (\mathbb{R}^2) = K_{S_3}^{S_3} (\mathbb{T}^2)$

$LHS = K_{S_3}^{\mathbb{Z}^2 \rtimes S_3} (\mathbb{R}^2) = K_{S_3}^{S_3} (\mathbb{T}^2)$

The Baum-Connes isomorphism is $K_{S_3}^{S_3} (T) \cong K_{S_3}^{S_3} (T^\vee)$ where T, T^\vee are dual tori
Langlands duality

\(\mathcal{G} \) a compact connected semi-simple Lie group

\(T \) a maximal torus with Lie algebra \(t \)
Langlands duality

\[G \] a compact connected semi-simple Lie group

\[T \] a maximal torus with Lie algebra \(\mathfrak{t} \)

\((X^*, \Phi, X_*, \Phi^\vee)\) is the root datum of \(G \)

\[T = \mathfrak{t}/X_*, \; X^* = \text{dual lattice} \]

\[\Phi = \text{roots, } \Phi^\vee = \text{coroots} \]
Langlands duality

G a compact connected semi-simple Lie group

T a maximal torus with Lie algebra \mathfrak{t}

$(X^*, \Phi, X_*, \Phi^\vee)$ is the root datum of G

$T = \mathfrak{t}/X_*$, $X^* = $ dual lattice

$\Phi = $ roots, $\Phi^\vee = $ coroots

Definition

The (real) Langlands dual of G is the Lie group with datum $(X_*, \Phi^\vee, X^*, \Phi)$.
Langlands duality

\(\mathcal{G} \) a compact connected semi-simple Lie group

\(T \) a maximal torus with Lie algebra \(\mathfrak{t} \)

\((X^*, \Phi, X_*, \Phi^\vee)\) is the root datum of \(\mathcal{G} \)

\(T = \mathfrak{t}/X_* \), \(X^* = \) dual lattice

\(\Phi = \) roots, \(\Phi^\vee = \) coroots

Definition

The (real) Langlands dual of \(\mathcal{G} \) is the Lie group with datum \((X_*, \Phi^\vee, X^*, \Phi)\).

In the \(A_n, D_n, E_n \) cases \(\Phi^\vee = \Phi \)

The key difference is the lattices.

\[\begin{array}{c}
A_n & B_n & C_n & D_n & E_6 & E_7 & E_8 & F_4 & G_2 \\
\begin{tikzpicture}
 \begin{scope}
 \foreach \x in {0,1,2,3,4,5,6}
 {\node [circle, fill] (n\x) at (\x,0) {};
 \node [circle, fill] (n\x+7) at (\x,1) {};
 }
 \draw (n0) -- (n1) -- (n2) -- (n3) -- (n4) -- (n5) -- (n6);
 \end{scope}
\end{tikzpicture}
\end{array} \]
Affine Weyl groups

Definition

The extended affine Weyl group is

\[W'_a(G) = X_* \rtimes W \]
Affine Weyl groups

Definition
The extended affine Weyl group is

\[W'_a(G) = X^* \rtimes W \]

For the Langlands dual it is

\[W'_a(G^\vee) = X^* \rtimes W \]
Affine Weyl groups

Definition

The extended affine Weyl group is

\[W'_a(G) = X_\ast \rtimes W \]

For the Langlands dual it is

\[W'_a(G^\vee) = X^\ast \rtimes W \]

\(G = SU_3 \)

\(T = \left\{ \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} : \alpha \beta \gamma = 1 \right\} \)
Affine Weyl groups

Definition

The extended affine Weyl group is

\[W'_a(G) = X_* \rtimes W \]

For the Langlands dual it is

\[W'_a(G^\vee) = X^* \rtimes W \]

\[G = SU_3 \]

\[T = \left\{ \begin{pmatrix} \alpha & \beta & \gamma \\ \end{pmatrix} : \alpha \beta \gamma = 1 \right\} \]

\[X_* = \{ x \in \mathbb{Z}^3 : \sum x_i = 0 \} \]
Affine Weyl groups

Definition

The extended affine Weyl group is

$$W'_a(G) = X_\ast \rtimes W$$

For the Langlands dual it is

$$W'_a(G^\vee) = X_\ast \rtimes W$$

$$G = SU_3$$

$$T = \left\{ \begin{pmatrix} \alpha & \beta & \gamma \\ \end{pmatrix} : \alpha \beta \gamma = 1 \right\}$$

$$X_\ast = \{ \mathbf{x} \in \mathbb{Z}^3 : \sum x_i = 0 \}$$

$$W = S_3$$ acting by permutations

$$W'_a(G)$$ is (3,3,3) triangle group
Affine Weyl groups

Definition

The extended affine Weyl group is

\[W'_a(G) = X_* \rtimes W \]

For the Langlands dual it is

\[W'_a(G^\vee) = X^* \rtimes W \]

\[G = SU_3 \]

\[T = \{ \begin{pmatrix} \alpha & \beta & \gamma \end{pmatrix} : \alpha\beta\gamma = 1 \} \]

\[X_* = \{ x \in \mathbb{Z}^3 : \sum x_i = 0 \} \]

\[W = S_3 \text{ acting by permutations} \]

\[W'_a(G) \text{ is (3,3,3) triangle group} \]
Affine Weyl groups

Definition

The extended affine Weyl group is

\[W'_a(G) = X_* \rtimes W \]

For the Langlands dual it is

\[W'_a(G^\vee) = X^* \rtimes W \]

\[G = SU_3 \]

\[T = \left\{ \begin{pmatrix} \alpha & \beta & \gamma \\ \end{pmatrix} : \alpha \beta \gamma = 1 \right\} \]

\[X_* = \left\{ x \in \mathbb{Z}^3 : \sum x_i = 0 \right\} \]

\[W = S_3 \text{ acting by permutations} \]

\[W'_a(G) \text{ is (3,3,3) triangle group} \]

\[G^\vee = PSU_3 \]

\[T^\vee = \left\{ \begin{pmatrix} \alpha & \beta & \gamma \\ \end{pmatrix} \right\} / \{\delta I\} \]

\[X^* = \left\{ x \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0 \right\} \]
Affine Weyl groups

Definition

The extended affine Weyl group is

$$W'_a(G) = X_\ast \rtimes W$$

For the Langlands dual it is

$$W'_a(G^\vee) = X_\ast \rtimes W$$

$G = SU_3$

$$T = \left\{ \begin{pmatrix} \alpha & \beta & \gamma \\ \end{pmatrix} : \alpha \beta \gamma = 1 \right\}$$

$$X_\ast = \left\{ x \in \mathbb{Z}^3 : \sum x_i = 0 \right\}$$

$W = S_3$ acting by permutations

$W'_a(G)$ is (3,3,3) triangle group

$G^\vee = PSU_3$

$$T^\vee = \left\{ \begin{pmatrix} \alpha & \beta & \gamma \\ \end{pmatrix} \right\} / \{ \delta I \}$$

$$X^\ast = \left\{ x \in \mathbb{R}^3 : \sum x_i = 0 \right\}$$

$W = S_3$ acting by permutations

$W'_a(G^\vee)$ is ‘cone’ group
Theorem (Niblo-Plymen-W)

For G a compact connected semi-simple Lie group there is a commutative diagram:

$$
\begin{array}{ccc}
K^*_{\alpha} (G) (t) & \xrightarrow{\text{Baum Connes}} & K^*_* (C^r_{\alpha} (G)) \\
\downarrow & & \downarrow \\
K^* (C_0 (t) \rtimes W_{\alpha} (G)) & \xrightarrow{\text{Poincaré duality in KK}} & K^*_* (C_0 (t) \rtimes W_{\alpha} (G^\vee))
\end{array}
$$
Extended quotients and K-theory

By the equivariant Chern character of Baum and Connes the K-theory $K_*(C_0(t) \rtimes W'_a)$ is given (up to torsion) by the cohomology of the extended quotient $t//W'_a$.

Definition

The inertia space for G acting on X is

$$I(G, X) = \{(g, x) : gx = x\}.$$

The extended quotient is

$$X//G = I(G, X)/G.$$
Extended quotients and K-theory

By the equivariant Chern character of Baum and Connes the K-theory $K_\star(C_0(t) \rtimes W'_\alpha)$ is given (up to torsion) by the cohomology of the extended quotient $t//W'_\alpha$.

Definition

The inertia space for G acting on X is

$$I(G, X) = \{(g, x) : gx = x\}.$$

The extended quotient is

$$X//G = I(G, X)/G.$$

The action on $I(G, X) \subseteq G \times X$ is $h \cdot (g, x) = (g^h, hx)$.

It suffices to consider g ranging over conjugacy class representatives.

$$X//G = \bigsqcup_{g \text{ c.c. rep.}} X^g/Z(g).$$
Extended quotients and K-theory

By the equivariant Chern character of Baum and Connes the K-theory $K_*(C_0(t) \rtimes W'_a)$ is given (up to torsion) by the cohomology of the extended quotient $t//W'_a$.

Definition

The inertia space for G acting on X is

$$I(G, X) = \{(g, x) : gx = x\}.$$

The extended quotient is

$$X//G = I(G, X)/G.$$

The action on $I(G, X) \subseteq G \times X$ is $h \cdot (g, x) = (g^h, hx)$.

It suffices to consider g ranging over conjugacy class representatives.

$$X//G = \bigsqcup_{g \text{ c.c. rep.}} X^g/Z(g).$$

$X^g/Z(g)$ are called sectors.
Extended quotients and K-theory

By the equivariant Chern character of Baum and Connes the K-theory $K_*(C_0(t) \rtimes W'_a)$ is given (up to torsion) by the cohomology of the extended quotient $t//W'_a$.

Definition

The inertia space for G acting on X is

$$I(G, X) = \{(g, x) : gx = x\}.$$

The **extended quotient** is

$$X//G = I(G, X)/G.$$

The action on $I(G, X) \subseteq G \times X$ is

$$h \cdot (g, x) = (g^h, hx).$$

It suffices to consider g ranging over conjugacy class representatives.

$$X//G = \bigsqcup_{g \text{ c.c. rep.}} X^g/Z(g)$$

$X^g/Z(g)$ are called sectors.

Note: $t//W'_a = T//W$.

July 20, 2022 6 / 22
The A_{n-1} case

SU_n is the simply connected group of type A_{n-1}

PSU_n is the adjoint type group of type A_{n-1} (trivial centre)
The A_{n-1} case

SU_n is the simply connected group of type A_{n-1}

PSU_n is the adjoint type group of type A_{n-1} (trivial centre)

For any $k|n$ the cyclic group C_k of kth roots of unity is in the center of SU_n

SU_n/C_k is a group of type A_n – its Langlands dual is $SU_n/C_{k’}$ where $k’ = k/n$.
The A_{n-1} case

SU_n is the simply connected group of type A_{n-1}

PSU_n is the adjoint type group of type A_{n-1} (trivial centre)

For any $k|n$ the cyclic group C_k of kth roots of unity is in the center of SU_n

SU_n/C_k is a group of type A_n – its Langlands dual is $SU_n/C_{k'}$ where $k' = k/n$.

Theorem (Niblo-Plymen-W)

Let T_k be the maximal torus in SU_n/C_k (where $k|n$). Let W be the Weyl group.

\[T_k/W \text{ is homotopy equivalent to } \prod_{\mu} \mathbb{T}^{b(\mu)-1} \times Y_{\mu} \]

where μ ranges over partitions of n

$b(\mu)$ is the number of distinct parts of μ

Y_{μ} is a discrete set of cardinality $\frac{\gcd(\mu)}{a} \sum_{s=0}^{a-1} \gcd(a, s)$ with $a = \gcd \left(\gcd(\mu), \frac{n}{\gcd(\mu)}, k, n/k \right)$
Question

What is $T//W$ where T is a maximal torus and W is the Weyl group of type E_6?
Exceptional type E_6

Question

What is $T//W$ where T is a maximal torus and W is the Weyl group of type E_6?

We need to determine:

- Conjugacy class representatives
- Centralisers of these
- Fixed sets
Exceptional type E_6

Question

What is $T//W$ where T is a maximal torus and W is the Weyl group of type E_6?

We need to determine:

- Conjugacy class representatives
- Centralisers of these
- Fixed sets

Theorem (Carter 1972)

*Let W be the Weyl group of a simple Lie algebra. Conjugacy classes in W are determined by **admissible diagrams**.*

In particular Carter enumerates conjugacy classes and computes the number of elements.
Roots in E_6

E_6 has 72 roots.

$\langle r, r \rangle = 2$ for all $r \implies r^\vee = r$ and $\langle r, r' \rangle = \pm 1$ or 0 for $r \neq r'$.
Roots in E_6

E_6 has 72 roots.

\[\langle r, r \rangle = 2 \text{ for all } r \implies r^\vee = r \text{ and } \]
\[\langle r, r' \rangle = \pm 1 \text{ or } 0 \text{ for } r \neq r'. \]

$s_{r'} r = r + r'$ is a root if $\langle r, r' \rangle = -1$
Roots in E_6

E_6 has 72 roots.

$\langle r, r \rangle = 2$ for all $r \iff r^\vee = r$ and $\langle r, r' \rangle = \pm 1$ or 0 for $r \neq r'$.

$s_r r = r + r'$ is a root if $\langle r, r' \rangle = -1$

Each connected subdiagram of the Dynkin diagram gives a root e.g.

$$r_T = r_2 + r_3 + r_4 + r_6$$
Roots in E_6

E_6 has 72 roots.

$\langle r, r \rangle = 2$ for all $r \implies r^\vee = r$ and $\langle r, r' \rangle = \pm 1$ or 0 for $r \neq r'$.

$s_{r'} r = r + r'$ is a root if $\langle r, r' \rangle = -1$

Each connected subdiagram of the Dynkin diagram gives a root e.g.

$r_T = r_2 + r_3 + r_4 + r_6$

$r_1 + 2r_2 + 3r_3 + 2r_4 + r_5 + 2r_6$ is the maximal root.

Define $r_0 = -\max \text{ root}$
Roots in E_6

E_6 has 72 roots.

$$\langle r, r \rangle = 2 \text{ for all } r \implies r^\vee = r \text{ and }$$

$$\langle r, r' \rangle = \pm 1 \text{ or } 0 \text{ for } r \neq r'.$$

$s_{r'}r = r + r'$ is a root if $\langle r, r' \rangle = -1$

Each connected subdiagram of the Dynkin diagram gives a root e.g.

$$r_T = r_2 + r_3 + r_4 + r_6$$

$r_1 + 2r_2 + 3r_3 + 2r_4 + r_5 + 2r_6$ is the maximal root.

Define $r_0 = -\text{ max root}$
Conjugacy class representatives

Write s_i for the reflection given by root $r_i, \ i = 0, \ldots, 6.$
Conjugacy class representatives

Write s_i for the reflection given by root r_i, $i = 0, \ldots, 6$.

| Type | CC Rep | CC Size | $|Z_W(w)|$ | Elementary Part | Index in $|Z_W(w)|$ |
|------|--------|---------|-----------|-----------------|-------------------|
| \emptyset | e | 1 | 51840 | W | 1 |
| A_1 | s_0 | 36 | 1440 | $\langle s_0 \rangle \times \langle s_1, \ldots, s_5 \rangle$ | 1 |
| A_1^2 | s_0s_1 | 270 | 192 | $\langle s_0, s_1 \rangle \times \langle s_3, \ldots, s_5 \rangle$ | 2 |
| A_2 | s_0s_6 | 240 | 216 | $\langle s_0s_6 \rangle \times \langle s_1, s_2, s_4, s_5 \rangle$ | 2 |
| A_3 | $s_0s_1s_5$ | 540 | 96 | $\langle s_0, s_1, s_5 \rangle \times \langle s_3 \rangle$ | 6 |
| $A_2 \times A_1$ | $s_0s_6s_1$ | 1440 | 36 | $\langle s_0s_6, s_1 \rangle \times \langle s_4, s_5 \rangle$ | 1 |
| A_3 | $s_0s_6s_3$ | 1620 | 32 | $\langle s_0s_6s_3 \rangle \times \langle s_1, s_5 \rangle$ | 2 |
| A_4^2 | $s_0s_1s_5s_3$ | 45 | 1152 | $\langle s_0, s_1, s_5, s_3 \rangle$ | 72 |
| $A_2 \times A_2^2$ | $s_0s_6s_1s_5$ | 2160 | 24 | $\langle s_0s_6, s_1, s_5 \rangle$ | 2 |
| A_2^2 | $s_0s_6s_1s_2$ | 480 | 108 | $\langle s_0s_6, s_1s_2 \rangle \times \langle s_4, s_5 \rangle$ | 2 |
| $A_3 \times A_1$ | $s_0s_6s_3s_1$ | 3240 | 16 | $\langle s_0s_6s_3, s_1 \rangle \times \langle s_5 \rangle$ | 1 |
| A_4 | $s_0s_6s_3s_4$ | 5184 | 10 | $\langle s_0s_6s_3s_4 \rangle \times \langle s_1 \rangle$ | 1 |
| D_4 | $s_1s_5s_0T$ | 1440 | 36 | $\langle s_1s_5s_0T \rangle$ | 6 |
| $D_4[a_1]$ | $s_1Ts_5s_0^T$ | 540 | 96 | $\langle s_1Ts_5s_0^T \rangle$ | 24 |
| Type | CC Rep | CC Size | $|Z_W(w)|$ | Elementary Part | Index in $|Z_W(w)|$ |
|------------|-------------------------------|---------|---------|--|------------------|
| $A_2^2 \times A_1$ | $s_0 s_6 s_5 s_1 s_2$ | 1440 | 36 | $\langle s_0 s_6, s_5, s_1 s_2 \rangle$ | 2 |
| $A_3 \times A_1^2$ | $s_0 s_6 s_3 s_1 s_5$ | 540 | 96 | $\langle s_0 s_6 s_3, s_1, s_5 \rangle$ | 6 |
| $A_4 \times A_1$ | $s_0 s_6 s_3 s_4 s_1$ | 5184 | 10 | $\langle s_0 s_6 s_3 s_4, s_1 \rangle$ | 1 |
| A_5 | $s_0 s_6 s_3 s_4 s_5$ | 4320 | 12 | $\langle s_0 s_6 s_3 s_4 s_5 \rangle \times \langle s_1 \rangle$ | 1 |
| D_5 | $s_0 s_6 s_3 s_4 s_3^{s_2 s_4}$ | 6480 | 8 | $\langle s_0 s_6 s_3 s_4 s_3^{s_2 s_4} \rangle$ | 1 |
| $D_5[a_1]$ | $s_0 s_6 s_3 s_4 s_3^T$ | 4320 | 12 | $\langle s_0 s_6 s_3 s_4 s_3^{s_2 s_4 s_6} \rangle$ | 1 |
| A_2^3 | $s_0 s_6 s_1 s_2 s_5 s_4$ | 80 | 648 | $\langle s_0 s_6, s_1 s_2, s_5 s_4 \rangle$ | 24 |
| $A_5 \times A_1$ | $s_0 s_6 s_3 s_4 s_5 s_1$ | 1440 | 36 | $\langle s_0 s_6 s_3 s_4 s_5, s_1 \rangle$ | 3 |
| E_6 | $s_1 s_2 s_3 s_4 s_5 s_6$ | 4320 | 12 | $\langle s_1 s_2 s_3 s_4 s_5 s_6 \rangle$ | 1 |
| $E_6[a_1]$ | $s_1 s_2 s_3 s_4 s_5 s_3^{s_3}$ | 5760 | 9 | $\langle s_1 s_2 s_3 s_4 s_5 s_3^{s_3} \rangle$ | 1 |
| $E_6[a_2]$ | $s_6 s_2 s_0^T s_1^T s_4 s_3$ | 720 | 72 | $\langle s_6 s_2 s_0^T s_1^T s_4 s_3 \rangle$ | 12 |
The roots $r_0, r_3, r_2 + r_3 + r_4, r_1 + r_2 + r_3 + r_4 + r_5$ are orthogonal so define commuting reflections.
PSymmetries of the roots

The roots $r_0, r_3, r_2 + r_3 + r_4, r_1 + r_2 + r_3 + r_4 + r_5$ are orthogonal so define commuting reflections.

The product $u_1 := s_0s_3s_{r_2+r_3+r_4}s_{r_1+r_2+r_3+r_4+r_5}$ is an involution s.t.

$$u_1r_i = \begin{cases} -r_{6-i} & i=1,2,\ldots,5 \\ -r_i & i = 0, 3, 6 \end{cases}$$

Hence $s^u_1 = \begin{cases} s_{6-i} & i=1,2,\ldots,5 \\ s_i & i = 0, 3, 6 \end{cases}$
The roots \(r_0, r_3, r_2 + r_3 + r_4, r_1 + r_2 + r_3 + r_4 + r_5 \) are orthogonal so define commuting reflections.

The product \(u_1 := s_0 s_3 s_{r_2+r_3+r_4}s_{r_1+r_2+r_3+r_4+r_5} \) is an involution s.t.

\[
u_1 r_i = \begin{cases} -r_{6-i} & i=1,2,\ldots,5 \\ -r_i & i = 0, 3, 6 \end{cases}
\]

Hence \(s_i^{u_1} = \begin{cases} s_{6-i} & i=1,2,\ldots,5 \\ s_i & i = 0, 3, 6 \end{cases} \)

Similarly we can define \(u_2 \) and \(u_3 = u_2^{u_1} \) giving the other two symmetries.

\(\langle u_1, u_2 \rangle \) is the dihedral group \(D_3 \).
Symmetries of cc representatives

Example

A_1^3 case: $w = s_0 s_1 s_5$.

The elementary centraliser $\langle s_0, s_1, s_5, s_3 \rangle$ has index 6 in $Z_W(w)$. $\langle u_1, u_2 \rangle$ permutes s_0, s_1, s_5 hence

$$\langle u_1, u_2 \rangle < Z_W(w)$$

u_1, u_2 fix s_3 so

$$Z_W(w) = \langle s_0, s_1, s_5 \rangle \rtimes \langle u_1, u_2 \rangle \times \langle s_3 \rangle.$$
Symmetries of cc representatives

Example

\(A_3^1\) case: \(w = s_0s_1s_5\).

The elementary centraliser \(\langle s_0, s_1, s_5, s_3 \rangle\) has index 6 in \(Z_W(w)\).

\(\langle u_1, u_2 \rangle\) permutes \(s_0, s_1, s_5\) hence

\[\langle u_1, u_2 \rangle < Z_W(w)\]

\(u_1, u_2\) fix \(s_3\) so

\[Z_W(w) = \langle s_0, s_1, s_5 \rangle \rtimes \langle u_1, u_2 \rangle \times \langle s_3 \rangle.\]

The elements \(u_1, u_2, u_3\) account for the remainder of the centraliser in cases

\(A_1^2, A_2, A_3, A_2 \times A_1, A_3, \ldots, A_2 \times A_1, D_4, A_2^2 \times A_1\)
Symmetries of cc representatives

Example

A^3_1 case: $w = s_0 s_1 s_5$.

The elementary centraliser

$\langle s_0, s_1, s_5, s_3 \rangle$ has index 6 in $Z_W(w)$.

$\langle u_1, u_2 \rangle$ permutes s_0, s_1, s_5 hence

$\langle u_1, u_2 \rangle < Z_W(w)$

u_1, u_2 fix s_3 so

$Z_W(w) = \langle s_0, s_1, s_5 \rangle \rtimes \langle u_1, u_2 \rangle \times \langle s_3 \rangle$.

The elements u_1, u_2, u_3 account for the remainder of the centraliser in cases

$A^2_1, A_2, A^3_1, A_3, A_2 \times A^2_1, A^2_2, D_4, A^2_2 \times A_1$

Example

A^4_1 case: $w = s_0 s_1 s_5 s_3$.

One notes that $u_1, u_2, T \in Z_W(w)$.

$\langle s_0, s_1, s_5, T \rangle$ is a Weyl group of type D_4 and

$Z_W(w) = W(D_4) \rtimes D_3$
Complex reflections

A_2^3 case: $w = s_0s_6s_1s_2s_5s_4$.

$w^3 = 1$ and w has eigenvalues $e^{\pm \frac{2}{3} \pi i}$
Complex reflections

A_2^3 case: $w = s_0s_6s_1s_2s_5s_4$.

$w^3 = 1$ and w has eigenvalues $e^{\pm \frac{2}{3} \pi i}$

The $\zeta = e^{\frac{2}{3} \pi i}$ eigenspace is spanned by

$$\{r_1 - \zeta r_2, r_5 - \zeta r_4, r_0 - \zeta r_6\}$$

The sum of these is $(\zeta^2 - 1)(r_T - \zeta r_3)$
which is the ζ eigenvector of the rotation Ts_3.
Complex reflections

A_2^3 case: $w = s_0s_6s_1s_2s_5s_4$.

$w^3 = 1$ and w has eigenvalues $e^{\pm \frac{2}{3} \pi i}$

The $\zeta = e^{\frac{2}{3} \pi i}$ eigenspace is spanned by

$$\{ r_1 - \zeta r_2, r_5 - \zeta r_4, r_0 - \zeta r_6 \}$$

The sum of these is $(\zeta^2 - 1)(r_T - \zeta r_3)$ which is the ζ eigenvector of the rotation T_s_3.

Similarly a $\overline{\zeta}$ eigenvector of T_s_3 is in the $\overline{\zeta}$ eigenspace of w so $T_s_3 \in Z_W(w)$.
Complex reflections

A_2^3 case: $w = s_0 s_6 s_1 s_2 s_5 s_4$.

$w^3 = 1$ and w has eigenvalues $e^{\pm \frac{2}{3} \pi i}$

The $\zeta = e^{\frac{2}{3} \pi i}$ eigenspace is spanned by

$$\{ r_1 - \zeta r_2, r_5 - \zeta r_4, r_0 - \zeta r_6 \}$$

The sum of these is $(\zeta^2 - 1)(r_T - \zeta r_3)$ which is the ζ eigenvector of the rotation Ts_3.

Similarly a $\overline{\zeta}$ eigenvector of Ts_3 is in the $\overline{\zeta}$ eigenspace of w so $Ts_3 \in Z_W(w)$.

Lemma

The group $\langle s_0 s_6, Ts_3, s_5 s_4 \rangle$ is the complex reflection group $G_{25} = 3 \overline{3} 3$.
Complex reflections

A_2^3 case: $w = s_0 s_6 s_1 s_2 s_5 s_4$.

$w^3 = 1$ and w has eigenvalues $e^{\pm 2\pi i/3}$

The $\zeta = e^{2\pi i/3}$ eigenspace is spanned by

$$\{ r_1 - \zeta r_2, r_5 - \zeta r_4, r_0 - \zeta r_6 \}$$

The sum of these is $(\zeta^2 - 1)(r_T - \zeta r_3)$ which is the ζ eigenvector of the rotation T_{s_3}.

Similarly a $\bar{\zeta}$ eigenvector of T_{s_3} is in the $\bar{\zeta}$ eigenspace of w so $T_{s_3} \in Z_W(w)$.

Lemma

The group $\langle s_0 s_6, T_{s_3}, s_5 s_4 \rangle$ is the complex reflection group $G_{25} = \bullet \bullet \bullet$.

Sketch: Let $J = \frac{1}{\sqrt{3}}(2w + I)$.

$w^2 + w + I = 0$ so $J^2 = -I$.

This makes t a \mathbb{C}-vector space and $s_0 s_6, T_{s_3}, s_5 s_4$ are complex reflections.
Complex reflections

A_2^3 case: $w = s_0s_6s_1s_2s_5s_4$.

$w^3 = 1$ and w has eigenvalues $e^{\pm 2\pi i/3}$

The $\zeta = e^{2\pi i/3}$ eigenspace is spanned by

$$\{r_1 - \zeta r_2, r_5 - \zeta r_4, r_0 - \zeta r_6\}$$

The sum of these is $(\zeta^2 - 1)(r_T - \zeta r_3)$ which is the ζ eigenvector of the rotation Ts_3.

Similarly a $\bar{\zeta}$ eigenvector of Ts_3 is in the $\bar{\zeta}$ eigenspace of w so $Ts_3 \in Z_W(w)$.

Lemma

The group $\langle s_0s_6, Ts_3, s_5s_4 \rangle$ is the complex reflection group G_{25}.

Sketch: Let $J = \frac{1}{\sqrt{3}}(2w + I)$.

$w^2 + w + I = 0$ so $J^2 = -I$.

This makes t a \mathbb{C}-vector space and s_0s_6, Ts_3, s_5s_4 are complex reflections.

An \mathbb{R}-linear map of t commutes with w iff it is \mathbb{C}-linear.

The generators satisfy the braid relations so give G_{25}.

Centralisers as reflection groups

Theorem (Springer, 1974)

For W a Weyl group, if $w \in W$ is regular then $Z_W(w)$ is a complex reflection group.

Regular: \exists regular eigenvector of w in $t \otimes \mathbb{C}$

$\langle s_1, s_2 \rangle \rtimes \langle u_1 \rangle$ is a reflection group over \mathbb{F}_3.
Centralisers as reflection groups

Theorem (Springer, 1974)

For W a Weyl group, if $w \in W$ is regular then $Z_W(w)$ is a complex reflection group.

Regular: \exists regular eigenvector of w in $t \otimes \mathbb{C}$

Question

Are all centralisers in Weyl groups complex reflection groups?
Centralisers as reflection groups

Theorem (Springer, 1974)

For W a Weyl group, if $w \in W$ is regular then $Z_W(w)$ is a complex reflection group.

Regular: \exists regular eigenvector of w in $t \otimes \mathbb{C}$

Question

Are all centralisers in Weyl groups complex reflection groups?

Answer

No.
Centralisers as reflection groups

Theorem (Springer, 1974)

For W a Weyl group, if $w \in W$ is regular then $Z_W(w)$ is a complex reflection group.

Regular: \exists regular eigenvector of w in $t \otimes \mathbb{C}$

Question

Are all centralisers in Weyl groups complex reflection groups?

Answer

No. In E_6 Weyl group

$$Z_W(s_0s_6) = \langle s_0s_6 \rangle \times \langle s_1, s_2 \rangle \rtimes \langle u_1 \rangle$$

is not a complex reflection group.
Centralisers as reflection groups

Theorem (Springer, 1974)

For W a Weyl group, if $w \in W$ is regular then $Z_W(w)$ is a complex reflection group.

Regular: \exists regular eigenvector of w in $t \otimes \mathbb{C}$

Question

Are all centralisers in Weyl groups complex reflection groups?

Answer

No. In E_6 Weyl group

$$Z_W(s_0s_6) = \langle s_0s_6 \rangle \times \langle s_1, s_2 \rangle \rtimes \langle u_1 \rangle$$

is not a complex reflection group.

$$\langle s_1, s_2 \rangle \rtimes \langle u_1 \rangle$$ is a reflection group over \mathbb{F}_3.
Fixed sets

General context: \mathcal{G} compact connected semisimple Lie group.

Fixed sets are subgroups of maximal torus $T = t/X_*$
Fixed sets

General context: G compact connected semisimple Lie group.

Fixed sets are subgroups of maximal torus $T = t/X_*$

Let $F_w = \pi_0(T^w)$ finite Abelian group.
Fixed sets

General context: \mathcal{G} compact connected semisimple Lie group.

Fixed sets are subgroups of maximal torus $T = t/X_*$

Let $F_w = \pi_0(T^w)$ finite Abelian group.

Let $\ell(w)$ denote the word length of w with respect to all root reflections in W.

Lemma (Carter)

$\ell(w)$ is the number of eigenvalues of w on t which are $\neq 1$. ($= \text{rank}(I - w)$)

Hence identity component of T^w is $T^{n-\ell(w)}$ where $n = \text{rank}$.
Fixed sets

General context: G compact connected semisimple Lie group.

Fixed sets are subgroups of maximal torus $T = t/X_*$.

Let $F_w = \pi_0(T^w)$ finite Abelian group.

Let $\ell(w)$ denote the word length of w with respect to all root reflections in W.

Lemma (Carter)

$\ell(w)$ is the number of eigenvalues of w on t which are $\neq 1$. ($= \text{rank}(I - w)$)

Hence identity component of T^w is $\mathbb{T}^{n - \ell(w)}$ where $n = \text{rank}$.

Let T, T^\vee be maximal tori in Langlands dual groups.

Let $F_w = \pi_0(T^w), F_w^\vee = \pi_0((T^\vee)^w)$.

Theorem (PNW)

There is a faithful pairing $F_w \times F_w^\vee \to U(1)$. (i.e $F_w^\vee \cong \hat{F_w}$)
Fixed sets

General context: G compact connected semisimple Lie group.

Fixed sets are subgroups of maximal torus $T = t/X_*$

Let $F_w = \pi_0(T^w)$ finite Abelian group.

Let $\ell(w)$ denote the word length of w with respect to all root reflections in W.

Lemma (Carter)

$\ell(w)$ is the number of eigenvalues of w on t which are $\neq 1$. ($= \text{rank}(I - w)$)

Hence identity component of T^w is $t^{n-\ell(w)}$ where $n = \text{rank}$.

Let T, T^\vee be maximal tori in Langlands dual groups.

Let $F_w = \pi_0(T^w), F_w^\vee = \pi_0((T^\vee)^w)$.

Theorem (PNW)

There is a faithful pairing $F_w \times F_w^\vee \to U(1)$. (i.e $F_w^\vee \cong \hat{F}_w$)

Moreover the actions of $Z_W(w)$ on F_w and F_w^\vee are dual.
Comparing Fixed sets

Let T, T^\vee be maximal tori in Langlands dual groups.

The identity component in each case is $\pi_0(T^w)$ is dual to $\pi_0((T^\vee)^w)$ so they are isomorphic.

Theorem (NPW)

For any G and $w \in W(G)$ there is a (noncanonical) isomorphism $T^w \cong (T^\vee)^w$.

Theorem (PNW)

Let g be the g.c.d. of determinants of ℓ^w-minors of I^w using coordinates with respect to a basis of X^\ast. Then $|F^w| = |\hat{F}^w| = g$.
Comparing Fixed sets

Let T, T^\vee be maximal tori in Langlands dual groups.

The identity component in each case is $\mathbb{T}^{n-\ell(w)}$.

Theorem (NPW)

For any G and $w \in W(G)$ there is a (noncanonical) isomorphism $T^w \sim (T^\vee)^w$.

Theorem (PNW)

Let g be the g.c.d. of determinants of $\ell(w) \times \ell(w)$-minors of $I - w$ using coordinates with respect to a basis of X^\ast. Then $|F^w| = |\hat{F}^w| = g$.

July 20, 2022 17 / 22
Comparing Fixed sets

Let T, T^\vee be maximal tori in Langlands dual groups.

The identity component in each case is $T^{n-\ell(w)}$

$\pi_0(T^w)$ is dual to $\pi_0((T^\vee)^w)$ so they are isomorphic
Comparing Fixed sets

Let T, T^\vee be maximal tori in Langlands dual groups.

The identity component in each case is $\mathbb{T}^{n-\ell(w)}$.

$\pi_0(T^w)$ is dual to $\pi_0((T^\vee)^w)$ so they are isomorphic.

Theorem (NPW)

For any G and $w \in W(G)$ there is a (noncanonical) isomorphism $T^w \cong (T^\vee)^w$.

$|F^w| = |\hat{F}^w| = g$.

July 20, 2022 17 / 22
Comparing Fixed sets

Let T, T^\vee be maximal tori in Langlands dual groups.

The identity component in each case is $T^{n-\ell}(w)$

$\pi_0(T^w)$ is dual to $\pi_0((T^\vee)^w)$ so they are isomorphic

Theorem (PNW)

Let g be the g.c.d. of determinants of $\ell(w) \times \ell(w)$-minors of $I-w$ using coordinates with respect to a basis of X^*. Then

$|F_w| = |\hat{F}_w| = g$.

Theorem (NPW)

For any G and $w \in W(G)$ there is a (noncanonical) isomorphism $T^w \cong (T^\vee)^w$.

Theorem (NPW)
Sectors of Extended Quotient for E_6 (simply connected)

<table>
<thead>
<tr>
<th>Type</th>
<th>Fixed set</th>
<th>Quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>T^6</td>
<td>Δ^6</td>
</tr>
<tr>
<td>A_1</td>
<td>T^5</td>
<td>Δ^5</td>
</tr>
<tr>
<td>A_1^2</td>
<td>T^4</td>
<td>$\Delta^3 \times S^1$</td>
</tr>
<tr>
<td>A_2</td>
<td>T^4</td>
<td>$\text{SP}^2(\Delta^2)$</td>
</tr>
<tr>
<td>A_3</td>
<td>T^3</td>
<td>$\Delta^2 \times \Delta^1$</td>
</tr>
<tr>
<td>$A_2 \times A_1$</td>
<td>$T^3 \times T^1$</td>
<td>$\Delta^2 \cup \Delta^2$</td>
</tr>
<tr>
<td>A_3</td>
<td>T^3</td>
<td>$\Delta^2 \times S^1$</td>
</tr>
<tr>
<td>A_4</td>
<td>$T^2 \times V_4$</td>
<td>$\text{SP}^2(T^1)$</td>
</tr>
<tr>
<td>$A_2 \times A_1^2$</td>
<td>T^2</td>
<td>$\Delta^2 \times Z$</td>
</tr>
<tr>
<td>A_2</td>
<td>$T^2 \times Z$</td>
<td>$\Delta^2 \times Z$</td>
</tr>
<tr>
<td>$A_3 \times A_1$</td>
<td>T^2</td>
<td>$\Delta^1 \times T^1$</td>
</tr>
<tr>
<td>A_4</td>
<td>T^2</td>
<td>$\text{SP}^2(T^1)$</td>
</tr>
<tr>
<td>D_4</td>
<td>T^2</td>
<td>Δ^2</td>
</tr>
<tr>
<td>$D_4[a_1]$</td>
<td>T^2</td>
<td>Δ^2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Fixed set</th>
<th>Quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_2^2 \times A_1$</td>
<td>$T^1 \times Z$</td>
<td>$\Delta^1 \times Z$</td>
</tr>
<tr>
<td>$A_3 \times A_1^2$</td>
<td>$T^1 \times V_4$</td>
<td>$T^1 \sqcup T^1$</td>
</tr>
<tr>
<td>$A_4 \times A_1$</td>
<td>T^1</td>
<td>T^1</td>
</tr>
<tr>
<td>A_5</td>
<td>$T^1 \times Z$</td>
<td>$\Delta^1 \times Z$</td>
</tr>
<tr>
<td>D_5</td>
<td>T^1</td>
<td>T^1</td>
</tr>
<tr>
<td>$D_5[a_1]$</td>
<td>T^1</td>
<td>T^1</td>
</tr>
<tr>
<td>A_2^3</td>
<td>$C_3 \times C_3 \times Z$</td>
<td>Four points</td>
</tr>
<tr>
<td>$A_5 \times A_1$</td>
<td>$V_4 \times Z$</td>
<td>$Z \sqcup Z$</td>
</tr>
<tr>
<td>E_6</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>$E_6[a_1]$</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>$E_6[a_2]$</td>
<td>Z</td>
<td>Z</td>
</tr>
</tbody>
</table>
The A_2^3 case

The Hessian group is the group of determinant 1 affine transformations of \mathbb{F}_3^2.

This is G_{25}/C_3.
The A_2^3 case

The Hessian group is the group of determinant 1 affine transformations of \mathbb{F}_3^2.

This is G_{25}/C_3.

$w = s_0s_6s_1s_2s_5s_4$ has centraliser $Z_W(w) = G_{25}$.

Of course w acts trivially on the fixed set so we have action of Hessian group $G_{25}/\langle w \rangle$.
The A_2^3 case

The Hessian group is the group of determinant 1 affine transformations of \mathbb{F}_3^2.

This is G_{25}/C_3.

$w = s_0s_6s_1s_2s_5s_4$ has centraliser $Z_W(w) = G_{25}$.

Of course w acts trivially on the fixed set so we have action of Hessian group $G_{25}/\langle w \rangle$.

The fixed set is \mathbb{F}_3^3.

$Z_W(w)$ fixes the central C_3 in the Lie group.

The action on \mathbb{F}_3^3 consists of linear maps of \mathbb{F}_3^3 fixing one direction.
The A_2^3 case

The Hessian group is the group of determinant 1 affine transformations of \mathbb{F}_3^2.

This is G_{25}/C_3.

$w = s_0 s_5 s_1 s_2 s_5 s_4$ has centraliser $Z_W(w) = G_{25}$.

Of course w acts trivially on the fixed set so we have action of Hessian group $G_{25}/\langle w \rangle$.

The fixed set is \mathbb{F}_3^3.

$Z_W(w)$ fixes the central C_3 in the Lie group.

The action on \mathbb{F}_3^3 consists of linear maps of \mathbb{F}_3^3 fixing one direction.

The dual action consists of linear maps of \mathbb{F}_3^3 preserving one coordinate.
The A_2^3 case

The Hessian group is the group of determinant 1 affine transformations of \mathbb{F}_3^3.

This is G_{25}/C_3.

$w = s_0s_6s_1s_2s_5s_4$ has centraliser $Z_W(w) = G_{25}$.

Of course w acts trivially on the fixed set so we have action of Hessian group $G_{25}/\langle w \rangle$.

The fixed set is \mathbb{F}_3^3.

$Z_W(w)$ fixes the central C_3 in the Lie group.

The action on \mathbb{F}_3^3 consists of linear maps of \mathbb{F}_3^3 fixing one direction.

The dual action consists of linear maps of \mathbb{F}_3^3 preserving one coordinate.

The action of $Z_W(w)/\langle w \rangle$ on \mathbb{F}_3^3 is the dual of the standard Hessian representation – it acts transitively on the non-central points.
Sectors of Extended Quotient for E_6 (adjoint type)

For each $w \in W$ there are 2 possibilities

- Z is in the identity component

Theorem

For all $w \in W$ the sectors $T_w/Z/_{W(w)}$ and $(T \lor w)/Z/_{W(w)}$ are homotopy equivalent.

Conjecture

For any compact connected semisimple Lie group the sectors $T_w/Z/_{W(w)}$ and $(T \lor w)/Z/_{W(w)}$ are homotopy equivalent $\forall w$.

July 20, 2022 20 / 22
Sectors of Extended Quotient for E_6 (adjoint type)

For each $w \in W$ there are 2 possibilities

- Z is in the identity component
 \[(T^\vee)^w = T^w / Z \text{ and } \pi_0(T^w) \xrightarrow{\cong} \pi_0((T^\vee)^w) \]
Sectors of Extended Quotient for E_6 (adjoint type)

For each $w \in W$ there are 2 possibilities

- Z is in the identity component
 $$\implies (T^\vee)^w = T^w/Z \text{ and } \pi_0(T^w) \cong \pi_0((T^\vee)^w)$$
 $$\implies (T^\vee)^w/Z_W(w) = (T^w/Z_W(w))/Z$$
Sectors of Extended Quotient for E_6 (adjoint type)

For each $w \in W$ there are 2 possibilities

- Z is in the identity component
 \[(T^\vee)^w = T^w/Z \text{ and } \pi_0(T^w) \cong \pi_0((T^\vee)^w) \]
 \[(T^\vee)^w/Z_W(w) = (T^w/Z_W(w))/Z \]

- $Z \hookrightarrow \pi_0(T^w)$
Sectors of Extended Quotient for E_6 (adjoint type)

For each $w \in W$ there are 2 possibilities

- Z is in the identity component

 $$ (T^\vee)^w = T^w/Z \quad \text{and} \quad \pi_0(T^w) \xrightarrow{\simeq} \pi_0((T^\vee)^w) $$

 $$ (T^\vee)^w/Z_W(w) = (T^w/Z_W(w))/Z $$

- $Z \hookrightarrow \pi_0(T^w)$

 $$ \Rightarrow \text{identity components of } T^w, (T^\vee)^w \text{ are equal} $$

Theorem

For all $w \in W$ the sectors $T^w/Z_W(w)$ and $(T^\vee)^w/Z_W(w)$ are homotopy equivalent.

Conjecture

For any compact connected semisimple Lie group the sectors $T^w/Z_W(w)$ and $(T^\vee)^w/Z_W(w)$ are homotopy equivalent \((\forall w)\).
Sectors of Extended Quotient for E_6 (adjoint type)

For each $w \in W$ there are 2 possibilities

- Z is in the identity component
 $\implies (T^\vee)^w = T^w / Z$ and $\pi_0(T^w) \cong \pi_0((T^\vee)^w)$
 $(T^\vee)^w / Z_W(w) = (T^w / Z_W(w)) / Z$

- $Z \hookrightarrow \pi_0(T^w)$
 \implies identity components of T^w, $(T^\vee)^w$ are equal
 T^w / Z has index 3 in $(T^\vee)^w$
Sectors of Extended Quotient for E_6 (adjoint type)

For each $w \in W$ there are 2 possibilities

- Z is in the identity component
 \[(T^\vee)^w = T^w/Z \text{ and } \pi_0(T^w) \xrightarrow{\cong} \pi_0((T^\vee)^w) \]
 \[(T^\vee)^w/Z_W(w) = (T^w/Z_W(w))/Z \]

- $Z \hookrightarrow \pi_0(T^w)$
 \[
 \implies \text{identity components of } T^w, (T^\vee)^w \text{ are equal}
 \]
 \[T^w/Z \text{ has index 3 in } (T^\vee)^w \]

Theorem

For all $w \in W$ the sectors $T^w/Z_W(w)$ and $(T^\vee)^w/Z_W(w)$ are homotopy equivalent.
Sectors of Extended Quotient for E_6 (adjoint type)

For each $w \in W$ there are 2 possibilities

- Z is in the identity component
 \[(T^\vee)^w = T^w/Z \text{ and } \pi_0(T^w) \xrightarrow{\cong} \pi_0((T^\vee)^w) \]
 \[(T^\vee)^w/Z_W(w) = (T^w/Z_W(w))/Z \]

- $Z \hookrightarrow \pi_0(T^w)
 \implies \text{identity components of } T^w, (T^\vee)^w \text{ are equal}
 \]
 \[T^w/Z \text{ has index 3 in } (T^\vee)^w \]

Theorem

For all $w \in W$ the sectors $T^w/Z_W(w)$ and $(T^\vee)^w/Z_W(w)$ are homotopy equivalent.

Conjecture

For any compact connected semisimple Lie group the sectors $T^w/Z_W(w)$ and $(T^\vee)^w/Z_W(w)$ are homotopy equivalent $\forall w$.
Applications: Iwahori-spherical block

\[G_p = \text{split adjoint group over } F = \mathbb{Q}_p \text{ with } E_6 \text{ root system.} \]

\[T_F = \text{maximal torus of } G_p, \quad ^0 T_F \subset T_F = \text{maximal compact.} \]
Applications: Iwahori-spherical block

$G_p = \text{split adjoint group over } F = \mathbb{Q}_p \text{ with } E_6 \text{ root system.}$

$T_F = \text{maximal torus of } G_p, \ 0T_F \subset T_F = \text{maximal compact.}$

$\chi: T_F \rightarrow \mathbb{C}^\times \text{ is unramified if it is trivial on } 0T_F.$

The *Iwahori-spherical block* $= \text{irreducible smooth } G \text{-representations given by parabolic induction from unramified characters.}$
Applications: Iwahori-spherical block

\[G_p = \text{split adjoint group over } F = \mathbb{Q}_p \text{ with } E_6 \text{ root system.} \]

\[T_F = \text{maximal torus of } G_p, \quad 0T_F \subset T_F = \text{maximal compact.} \]

\[\chi : T_F \rightarrow \mathbb{C}^\times \text{ is unramified if it is trivial on } 0T_F. \]

The \textit{Iwahori-spherical block} = irreducible smooth \(G \)-representations given by parabolic induction from unramified characters.

Theorem (Aubert-Baum-Plymen-Solleveld)

\textit{For } \(p \neq 2, 3, 5 \text{ there is cts bijection } T//W \rightarrow \text{tempered representations in Iwahori-spherical block} \)
Applications: Iwahori-spherical block

\[\mathcal{G}_p = \text{split adjoint group over } F = \mathbb{Q}_p \text{ with } E_6 \text{ root system.} \]

\[T_F = \text{maximal torus of } \mathcal{G}_p, \quad ^0 T_F \subset T_F = \text{maximal compact.} \]

\[\chi : T_F \to \mathbb{C}^\times \text{ is unramified if it is trivial on } ^0 T_F. \]

The *Iwahori-spherical block* = irreducible smooth \(\mathcal{G} \)-representations given by parabolic induction from unramified characters.

Theorem (Aubert-Baum-Plymen-Solleveld)

For \(p \neq 2, 3, 5 \) there is cts bijection \(T//W \to \text{tempered representations in Iwahori-spherical block} \)

Our calculation gives geometric structure of tempered reps in Iwahori-spherical block.
Applications: K-theory

Theorem

Let W'_a be the extended affine Weyl group of a Lie group of type E_6. Up to torsion $K_*(C^*_rW'_a)$ is

\[
\begin{cases}
\mathbb{Z}^{47} & \text{in dimension 0} \\
\mathbb{Z}^{11} & \text{in dimension 1}
\end{cases}
\]

This holds for both simply connected and adjoint type cases.
Theorem

Let W'_a be the extended affine Weyl group of a Lie group of type E_6. Up to torsion $K_*(C^*_r W'_a)$ is

\[
\begin{cases}
\mathbb{Z}^{47} & \text{in dimension 0} \\
\mathbb{Z}^{11} & \text{in dimension 1}
\end{cases}
\]

This holds for both simply connected and adjoint type cases.
Questions?